Reinforcement Learning

This course introduces basic as well as modern concepts of reinforcement learning.

The aim of the course is to introduce basic as well as modern concepts of reinforcement learning. This includes Markov decision processes, dynamic programming, model-free prediction and control, temporal difference learning, function approximation methods, policy gradient and actor-critic methods, and modern applications of reinforcement learning.

The course consists of two modules: theory (3.5 credits) and project (4 credits).


Teaching Format

Instruction is given in the form of lectures, exercise sessions and supervision.


Assessment

The course is assessed through a written exam, and project assignment.

Both parts of the course are graded on a scale from A to F, where A to E are passing grades. To complete the course, a passing grade is required on both parts, and the final grade of the course is determined by weighing the grades from the course modules, where each grade is weighed in relation to the scope of the course module.

Examiner

A list of examiners can be found on

Exam information

The schedule will be available no later than one month before the start of the course. We do not recommend print-outs as changes can occur. At the start of the course, your department will advise where you can find your schedule during the course.


Note that the course literature can be changed up to two months before the start of the course.

"Reinforcement Learning: An introduction", R.S. Sutton and A.G. Barto, 2nd Edition, MIT Press, Cambridge, MA (2018) (e-book available via the university library)

"An Introduction to Deep Reinforcement Learning", V. François-Lavet, P. Henderson, R. Islam, M.G. Bellemare, J. Pineau, Foundations and Trends in Machine Learning: Vol. 11: No. 3-4, pp 219-354 (2018) (available for download at arxiv.org)

List of course literature Department of Mathematics

Course reports are displayed for the three most recent course instances.

New student
During your studies

Course web

We do not use Athena, you can find our course webpages on kurser.math.su.se.